

Python Coding Guidelines

This is a set of guidelines to make Python code more readable, easier to
maintain and easier to reuse.

The concentration is on sound coding rather than big issues around
architecture. We don’t pay much attention to how to make code faster.
We’re more interested in the process of efficient code production and
code maintenance. Writing idiomatic Python is a sound basis for
efficient code.

If you struggle with too many bugs and maintanance problems in your
project, applying the following recommendations might have a big
positive effect. The intent is to bring together many well-known good
practices in a checklist form to provide a toolkit for code reviews.
This is not an authoritative set of prescriptions. It’s a starting point
for developing your own set of guidelines. Discard or modify practices
as you see fit.

You’ll need to be familiar with Python to some extent since we won’t
explain basics of the language. But there are helpful references in the
appendix especially for common design patterns. If you are not familiar
with some parts of Python like how modules and packages work, you’ll
need to read up in the Python Standard Library documentation [https://docs.python.org].

Most of this material is applicable to most Python versions but we
assume a more or less current version like 3.7 or even higher.

Contents:

	Tools

	Basic Python Code Guidelines

	Context Dependent Variables

	Class Design

	Web Frameworks

	Summary

	Class Design Example

	Python Code Review Checklist

Indices and tables

	Search Page

Tools

Repls and debuggers

Every Python developer should be competent with these tools:

	ipython [https://ipython.org/]: This is the standard
repl [https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop]
these days

	Jupyter Notebooks [https://jupyter.org/]: a notebook that uses
iPython at its core

	ipdb [https://github.com/gotcha/ipdb]: the command line debugger
of iPython or some pdb variant.

It should be easy - very easy - to load code into each of these tools
not just load into your IDE’s debugger or repl. If it’s hard to do
this, it’s usually because context-dependent variables (see below) are
being passed excessively in the call graph making setup for the
debugging session complicated and time intensive. It will also make
writing unit tests a lot more difficult.

For the purposes of this article, it is irrelevant what code editor you
use, VSCode, PyCharm, Sublime, VIM, Emacs, etc. But be aware that just
because it’s easy to jump between definitions and usages of a function,
class, method, etc. does not mean your code is well structured. Don’t
make familiarity with your IDE an assumption in the code design.

Code Improvement Utilities

Some popular tools provide the best indication of things to fix or even
fix things automatically on your behalf. This is the easy part. Run
these tools always before pushing code:

	black https://github.com/psf/black: you run this and agree
that everyone in the team follows the style laid down by black.
It is the basis for applying other tools mentioned below. Always run
this first because it will fix a ton of things that would otherwise
be flagged by flake8.

	flake8 https://flake8.pycqa.org/en/latest/: This tool wraps
three other tools. The best thing about it is the defaults are
immediately useful. Run this and fix every raised issue. You can
configure it to skip some checks but mostly skipping checks is useful
only for an exisiting code base. For new code, it is important to not
play with the default for function complexity before pushing code.
flake8 wraps other tools and has default settings that let you
use it with minimal configuration effort for a big return on
investment.

If you don’t already run these tools, your code will experience a
massive improvement after fixing issues identified by flake8.

Other tools you should consider:

	`mypy <http://mypy-lang.org/>`__: this tool will find bugs but
also forces you to not do things that work but which are bad
practices, like having functions that return unexpected types. But it
also improves readability massively, IMHO. Fix everything flagged
by mypy. mypy is useless unless you use type hints in your
code. While there is vigorous debate about the benefits of type
hints, I personally find them unquestionably useful when used
appropriately. If you have no type hints, running mypy will find
no problems. If you have type hints but never run mypy (or one of
the other type checkers), you will find many problems upon finally
doing so. Better to run it consistently after adding your first type
hint. Fix every raised issue.

	`pylint <https://www.pylint.org/>`__: This is a great tool and
should be used on any significant project. But configuration is
non-trivial. At first you will get more out of flake8 plus
mypy. You can start using pylint and gradually build a
configuration that works for you.

You’ll notice, I don’t talk about line length or how to format
comprehensions or imports or other style issues. That’s because you are
running black and that tool decides for you. Style preferences of
individual programmers creates unneeded scanning overhead that you can
get rid of instantly with black.

One thing you should definitely not do is use type hints and then never
run mypy. Why? Because your type hints will be wrong. This is wrong:

def foo(a) -> str:
 try:
 return bar(a)
 except Exception:
 return None

The type hint should say Optional[str] because it might return
None. If this kind of thing accumulates, you have a mess on your
hands. If you use type hints, you need to run mypy and fix
everything every time. This will not be onerous at all if you are
consistent.

Use https://pre-commit.com/ to run tools automatically before a
git commit.

Basic Python Code Guidelines

Code reuseability and maintenance is about managing complexity. We don’t
care how hard machines have to work to understand things as long as
time/space tolerances are observed. We want our code to be readable by
human beings. Source code complexity is about the ability of other
developers to understand your code. Scanning is the process of reading
code to understand its consequences. “What is this code doing?” means
what side effects does it have, what data does it produce given specific
inputs or, maybe most often, what is wrong with it? Complexity causes
the reader cognitive load and consequently these questions are hard to
answer. Recommendations in this article are intended to make scanning
easier and to progressively implement code that can be managed, changed
and fixed more easily.

Post hoc Refactoring vs Upfront Design Investment

It is a common sentiment that it’s better to do the code right or not at
all. I.e. front-load design effort. In contrast, Agile methods prescribe
lower upfront design effort. It’s probably only a slight distoration to
suggest that Agile is based on the notion that the code will not be very
good anyway.

My view is that every development team should devote at least 30% of
scheduled time to refactoring. This does depend on what kind of project
you are working on. If it’s a marketing product web site that has a six
month lifespan, you are not going to feel a burning desire to invest
time into refactoring. But any framework code and long-term product code
probably could use some level of refactoring at any given point. Failure
to formally schedule refactoring time will lead to steady decline in
maintainability of the code base as technical debt rises with no counter
pressure.

Side Effects and State Management

The most important improvement you will ever achieve in your code is
being clear about changing the state of your data. This affects the
ability to reuse code and avoid bugs more than any other factor.

The functional [https://docs.python.org/3/howto/functional.html]
paradigm is useful here. Implement functions without side-effects as far
as possible. Give data via parameters to a function and get data back
via return values.

Most applications need to have side-effects like sending messages,
writing to databases, etc. But strive to understand where to use these
operations without polluting your code with artefacts of your web
framework or data storage framework. A web view function can and should
call data storage apis. Just don’t pass the objects that represent these
APIs any more than required to other functions.

Python is not a functional programming
language [https://stackabuse.com/functional-programming-in-python/]
but you can apply functional programming principles to a useful extent.
Much of what follows is about state management, the key to readable
code, reuse and reducing errors in software. While functional purity is
relatively easy to grasp for most developers, designing classes often
causes good intentions to crumble. We present a set of guideines below
to deal with class design complexity.

In the following, I prescribe various practices, not always with
detailed explanations as to why. The preference is for conveying a set
of recommendations along with a code review checklist. If you don’t have
that already, this provides you with something ready-to-go. If you don’t
like some of the recommendations, fork the checklist and modify to suits
your needs and opinions.

Likewise, I don’t give too many rules that are already covered by
black, flake8, pylint. black is dictatorial by design.
flake8 will patiently explain.

What we do not say:

	Make your functions only x lines of code and no more?

This is poor advice. We want our functions to be only as complex as
required but no simpler. Lines of code (LoC) does not equal complexity
although LoC is part of any complexity measurement. flake8
completely takes care of this for you. Don’t worry about it. Just do
what flake8 says. You can configure it to adjust complexity
threshold. Be careful about using that. There are cases where you can
skip on an individual file or line basis. Use #noqa judiciously.

	Break up your classes to make them all small?

Again, no. Don’t just reduce the size of classes because “smaller is
better”. Apply the below principles to achieve “as complex as required
but no more.” Classes become bloated when they are misused as pure
namespaces. Encapsulation and information hiding are decent concepts but
they are sometimes conflated with namespacing. It’s more important to
think in terms of how variables change over the lifetime of a class
instance.

Dead code

Do not use your code base to store code that was once useful or which
might be useful “one day”. Ruthlessly root out unused code. There are
utilities that can help with this, but you probably can browse your code
base and find unused code easily enough.

Types

Use immutable types whenever you can:

	tuple instead of list: like (1,2,3)

	frozenset instead of set: frozenset({1,2,3})

Make sure you are not using dicts when you should be using another type,
like one of these:

	namedtuple [https://docs.python.org/3/library/collections.html#collections.namedtuple]

	datasets [https://docs.python.org/3/library/dataclasses.html]

	Enum [https://docs.python.org/3/library/enum.html]

In particular don’t use dicts as enumeration types:

STATUS = {
 "READY": 0,
 "IN_PROGRESS": 1,
 "DONE": 2,
}

Use an Enum for this:

from enum import Enum
class Status(Enum):
 READY = 0
 IN_PROGRESS = 1
 DONE = 2

You get better type checking, immutability and excellent __repr__
output.

If you have built a mutable type, like a list, turn it into
frozenset or tuple if it will be used later without requiring
changes. If you are returning that type and don’t need it to change, it
is better to return the immutable type. If the user will change it, make
them cast it to a mutable type. This will help readers to understand the
developer intends to do state changes on that object.

For dataclasses, make sure you use frozen=True.

One day there will be a frozenmap type. But you probably want one of
the above anyway. Using immutable types helps readability because the
reader knows to scan past usages of immutable instance types searching
for state changes.

Modules and Packages

Use modules and packages as namespaces. Import the module name
preferably and call a function qualified by the module name. Now the the
reader doesn’t have to scroll to the top of the file to find out where
the function comes from. If the function is unqualified, it’s from the
current module.

Python supports a feature to indicate protected and private names, where
you prefix with either a single or double underscore. If you use this
feature, you need to be consistent or it gets very confusing.

You generally want to use module namespaces to convey where things are
coming from. You might want to hide some complexity by importing into
__init__.py. The user of that package will then import those
functions or classes without knowing the exact files where the
implementation resides. This is not necessarily a good thing. It
deprives the reader of the code of useful information.

There are diverging opinions about whether __init__.py should
contain code. On balance, it’s probably better to only have imports and
not implementation code. On anything but very small projects, you will
probably use __init__.py a lot for refactoring. It’s better to
therefore only have imports.

Be aware that modules and packages are often referred to interchangeably
even in the PSL. It matters little. Technically a package is a directory
and it has a file called __init__.py. What is important is you have
these ways to control access:

	__all__ in a module governs what is visible outside the module
during importing with import *

	Single underscore _ or double underscore __ in front of a
name governs visibility from outside the module under some
circumstances

	What you put in the __init__.py governs what is visible outside
the package

Note that “visible” and “accessible” are two different things. Python is
not very rigorous about this. Since Python is a highly permissive
language, rather then relying on some enforcement mechanism, make sure
you adopt your own standards for importing modules.

More importantly, when you use these features, make sure you understand
for whom you are using them: for the user of the module/class? Or for
the reader of the module’s code? Making your code intelligible to
readers should be your highest priority.

Functions

Make functions pure in the functional programming sense, i.e. don’t
write functions with side effects when possible. Do not change the state
of variables outside the function. But you can read data outside the
function, like referencing module variables.

Avoid using closures and nested functions in general unless you have a
compelling use case. Lambdas are too useful to avoid and generally can
enhance readability if not misused. Don’t assign a lambda expression to
a variable; functions already have all the characteristics you need if
you think you want that.

Brevity is not the defining criterion for a well-formed function. So,
what is?

	Have a function do one well-defined thing.

	Have manageable state, as few variables as possible to achieve the
single purpose of the function

	Make the function pure whenever possible

	Return immutable types whenever possible

You will sometimes update a mutable variable passed as a parameter
(list, dict, etc.). The convention in Python is to return None if
you update a list or dict passed to your function. So, that function has
a side-effect. It’s not pure. It is how some PSL (Python Standard
Library) functions work like sorted() vs list.sort().

But if you can, don’t change the passed value. Return a new instance of
an immutable type:

from typing import Tuple, Sequence
import random

def remove_odd(data: Sequence[int]) -> Tuple[int]:
 return tuple(_ for _ in data if not _ % 2)

d = [random.randint(0, 100) for _ in range(10)]
even_data = remove_odd(d)

Now even_data is a tuple. This is good. To be clear, if you are
changing the passed mutable variable, do not also return it.

Look for hanging indents that occur after for or if expressions.
Very often if there are many lines of code under one of these, this
block can be a separate function.

Reduce the number of separate variables given to a function or created
by a function.

A good quick way to look for complexity is the number of indent changes.
If you have many and variable indent changes in a function, you have
more complexity. This plus LoC (lines of code) taken together gives an
rough idea of complexity.flake8 uses a formal complexity analysis
tool but does not provide the sole indicator of complexity. But it is a
great place to start. Reporting on complexity metrics in your CI
pipeline is a great idea.

Default initialisations

Sticking to typical idioms in Python helps others read your code.

You could do this:

def foo(default_list=None):
 if not default_list:
 default_list = list()
 ...

This is better, more idiomatic python:

def foo(default_list=None):
 default_list = default_list or list()
 ...

What you should not do:

BAD
def foo(default_list=None):
 if not default_list: default_list = list()
 ...

It will work, but there is an idomatic way that is more expected.

If you need to change the value you’ll need to use the more verbose
conditional form:

we want an int that is not zero or else None
user_id = int(user_id) if user_id else None

If foo() requires a list:

def foo(default_list: List):
 ...

You could call it like this if you think my_list might be None:

foo(my_list or list())

This is a feature of Python not shared with most other languages.

None or list()

will get you an empty list

list() or None

will result in None.

bool(list() or None)

will result in False.

Problems with dict.get()

Often, dicts are used to initialise a request or function call. They come as JSON and the
developer makes use of the get() method to either get the provided value or
supply a default. This is often done incorrectly.

What is the output of the following?

data = {"price": None}
float(data.get("price", 0))

Many developers will say 0. If the “price” key is not present, the value of
this expression is 0.0. All good. But because the call to get() in this case
will return None, an exception will be thrown.

The solution is to parse and validate your input. If you wanted to use a dict
nevertheless you are probably looking for this:

float(order.get("price") or 0)

A better solution would be to parse the incoming data into a dataclass.
Dataclasses are now provided in Python and the PyDantic [https://pydantic-docs.helpmanual.io/] library provides parsing
with validation.

Iterating

Use comprehensions instead of for loops where possible and appropriate.

This is verbose and hard to scan:

max_len = 0
for line in file:
 if line.strip():
 max_len = len(line) if len(line) > max_len else max_len

Compared to:

max(len(line) for line in file if line.strip())

This is brief and easier to scan. It does not require the use of a
temporary variable, max_len, to hold state. It is a common idiom
that a reader can rely on to expect no side-effects.

Another example:

filtered_events = list()
for event in events:
 if event.dt >= today and event.dt < tomorrow:
 filtered_events.append(event)
events = filtered_events

Compared to:

events = [e for e in events if e.dt >= today and e.dt < tomorrow]

Prefer the second one because the idiom generally promises no side
effects whereas the for loop does not. The same goes for
comprehensions. We do not expect side effects in a comprehension (or
generator expression). The knowledge that there are no changes in the
state of the program on the right side of the assignment is critical to
our ability to mentally scan past that code when looking for state
changes.

List comprehensions and higher order functions, filter(), map(),
reduce(), etc., do nearly the same thing. Use list comprehensions by
preference but don’t worry if you prefer the higher order functions.

Functions you probably want to use that are not easily replaced with
comprehensions:

	zip() https://docs.python.org/3/library/functions.html#all

	all() https://docs.python.org/3/library/functions.html#all

	any() https://docs.python.org/3/library/functions.html#any

Here’s a hard-to-read prime number check function with three
return statements that can be found frequently in the web:

def is_prime(x):
 if x >= 2:
 for y in range(2, x):
 if not (x % y):
 return False
 else:
 return False
 return True

Compared to one that is pythonic, easy to read and more correct:

def is_prime(n: int) -> bool:
 return all(n % i for i in range(2, n))

And, yes, the pythonic version is faster. You can produce side effects
inside a comprehension but don’t. Do not use comprehensions to loop
through sequences without using the resulting sequence or collection
(list, dict, etc.). If you only want the side effects of such an
operation, use a for loop.

Gettting a tuple from a comprehesion is not quite consistent with other
forms like dict and list comprehensions. You might think the following
is a tuple comprehension:

e = (_ for _ in range(10))

But e is now a generator expression. Use this if you want a tuple
right away:

e = tuple(_ for _ in range(10))

There are going to be times when you want to return a generator and not
a tuple, like when the underlying data is large and requires iteration
by the caller.

Use dict.update() instead of for loops to update a dictionary where
possible or the merge | and update |= operators (from Python
3.9).

Initialisation

Most python developers know not to use a mutable default value in a
function parameter declaration:

BAD
def foo(my_list=[]):
 ...

While this does not result in catastrophe every time, you always want
my_list=None and then make whatever changes are required to the
logic in the function body. Also, when initialising in the body, use a
callable instead of an empty list ([]):

my_list = list()

Comments and naming

The trend is towards fewer comments based on the assumption that other
factors contribute to telling the reader what is going on. Especially
eschew obvious comments. If you want to drive someone crazy do this:

Bad
class Address:
 """This class represents an address."""
 ...

Follow the rule that if you have nothing useful to say, say nothing at
all.

Assume you are writing your docstrings and comments first and then
writing the code that implements what is described. You should name
things - variables and functions - so that you can start removing the
comments as the code becomes sufficiently readable that the comments do
not add useful information. Remove any comment that does not add useful
information.

Name variables in a more descriptive way the further they are used from
their first use. If you are looping and using an index:

for i, name in enumerate(my_list_of_names):
 ...

i is ok for me if it lasts for very few lines, like three. If there
are more lines of code, you’d be better off doing something like this:

for name_index, name in enumerate(my_list_of_names):
 ...

Type hints are a better form of documentation. The convention for a
function docstring is something like:

def splice_name(first, last):
 """Return a str representing fullname."""
 return f"{first} {last}"

But now you can write:

def splice_name(first, last) -> str:
 """Combine first and last with space inbetween."""
 return f"{first} {last}"

Add more type annotations as necessary. Add a docstring unless it is
immediately obvious what the function does. But don’t bother identifying
the return value type in the docstring if you already use a type hint
for this purpose.

Now look what happens in iPython if I press return using ? after
the function name:

In [29]: splice_name?
Signature: splice_name(first, last) -> str
Docstring: Combine first and last with space inbetween.
File: ~/prj/<ipython-input-28-b0b71e899c5a>
Type: function

Likewise if you type help(splice_name). This is amazingly useful.

Profiling code

Profiling code should not become a heavy source of technical debt. If a
significant amount of code is just for profiling, this needs to be
removed before production deployment. It’s ok to leave in some code for
timings, but it should be minimal. If you are leaving in too much
profiling code, there is some fundamental design problem.

Don’t reinvent

Don’t create utilities for things the PSL (Python Standard Library)
already provides. Especially things in collections, itertools,
functools. Developers have a tendency to start building small
utilities especially for namespaces that already exist in the PSL. The
PSL versions are better than yours.

Unit tests and Linters

Unit testing is a required part of modern software development. It
exposes problems in areas that you think you have not changed,
regressions. It tests your intent versus what the software actually
does. It makes it vastly easier to check your work. Unit testing is
indispensible.

But unit tests are hard work. Whereas running a linter is trivial. It
would be really strange to expend significant time on unit tests (which
you should do) and then not run a linter.

When you write mostly pure functions, it’s easier - much easier - to
write unit tests.

When you refactor functions to satisfy complexity thresholds, you are
making writing unit tests easier.

Also, you should very probably be using
Hypothesis [https://hypothesis.readthedocs.io/].

Context Dependent Variables

These variables are complex, like classes that manage some state in a
way that might not be apparent to a user via these means:

	The state is not stable in the current context. It might change in
ways that are hard to predict.

	The state is produced in the first place by means that require
processes outside the scope of the current program. Ie. it’s not obvious how
the state was constructed. The variable is intangled with some integration.

	The variable is an instance of a class with dependencies on code
outside the PSL

Examples of context dependent variables:

	Request objects in a web framework

	A message queue

	An ORM object that represents and holds state about a database query
and implements “advanced” features like caching, etc.

In the first instance, a web request, you might change the state by
accessing methods on the object. In addition, it can be difficult to
follow the construction of this object. In the second case, the object’s
state could be changing while you are accessing it.

Avoid passing these variables as parameters any more than necessary to
other functions. If you need to give, for instance, the user object of a
Request to a subroutine, do not do this:

BAD
permissions = get_permissions(request)

Better:

permissions = get_permissions(request.user)

Best:

permissions = get_permissions(request.user.id)

Likewise:

BAD
formatted = format_message(queue)

Better:

formatted = format_message(queue.pop())

A good example is the Django Request class. It has a body
attribute. If you call .read() or .readline() on the request
object, these change the state of the body attribute. If you pass
request to a function, a reader of that function will not be able to
assume the state of the object. It is also much more difficult to
construct test instances of a Request object than to construct a
user object. You can experiment with calls to get_permissions() and
format_message() more easily in a repl. You can also use them in a
context that doesn’t require a request at all like if you are building a
command line interface to these functions.

Below we discuss the Parameter Consolidation class pattern. This is a simple
data class, in the sense of the PSL dataclasses module. This is not context
dependent. It is simple to intialise and simple to understand the lifecycle of
its state. A dataclass or simple class of your own construction is easy to
create.

When trying out or testing code, it is desirable to be able to load,
say, a function and pass parameters to it without excessive preparation
of data needed for arguments.

A practical way to check if a variable is context dependent: Can I
define it in a repl like ipython or a jupyter notebook easily?

Class Design

Class design is non-trivial. It’s where developers start having the most
problems. Signs of class design problems:

	Using base classes as utilities for subclasses

	Swiss army knife syndrome, the class does a variety of things

	Complex parameterisation of __init__()

	Too many class instance variables

	You are having to create too many subclasses

Classes are for managing state, not behaviour. If you have a class that only has
behaviour, it should probably be a module with one exception: when you need to
define an interface. But in general, don’t use a class as a namespace for
behaviour only. Modules already do that.

Follow these basic rules for classes:

	A class should do one thing only

	A subclass should be a more specific instance of a parent class

	Minimise use of inheritance

	Avoid where reasonably possible multiple inheritance

	Use composition, not inheritance to acquire capabilities

	Avoid class variables

	Don’t define constants in classes

	Don’t have class methods that don’t access cls or self

This last point helps you reduce class size using a reasonable rule.
Move methods that don’t access class or instance data to the module
level as functions. This way, other developers can see immediately that
they don’t access or modify class state. If you think that method is
part of the interface of the class, there is probably a design error
since classes are used to manage state.

As mentioned above, use a file/module if all you want is a namespace for
behaviour. If you have state to manage, then a class might be
appropriate.

Any class state that does not change should be either a class variable
or module level variable, preferably a constant. But consider moving
that class constant outside of the class, since while applying the rule
above, you will reduce the number of unneeded class methods. Class
methods always invite the need to scan for state changes in the class
instance variables. This is cognitive overhead that you want to reduce.

It’s really ok if your classes dissolve into a series of pure functions
in a module. This is a good thing because it’s easier to understand provided
each function does not operate on the same data repeatedly. If
the functions mostly work on the same data and it’s awkward to make them
be outside a class, maybe a class is better.

	Variables should become constants if they don’t ever change and the
value is known before runtime.

	Constants should be moved out of classes.

	Constants should be moved out of modules into their own module if
they are part of a general convention or protocol in your
application, especially if they are used by multiple packages since
this will help avoid cyclical imports.

You may find yourself moving towards a package structure like this:

	constants.py

	factories.py

	models.py # not ORM models, but common data structures as
datacalasses

	[domain].py # where domain is the name describing what you are
doing

Factories help to reduce dependencies when using composition. Constants
help define common protocols and remove unchanging state from classes.
Models are declarations of domain objects that have no framework or
integration dependencies.

SOLID principles

	Single Responsibility Principle (SRP)

	Open/Closed Principle

	Liskov’s Substitution Principle (LSP)

	Interface Segregation Principle (ISP)

	Dependency Inversion Principle (DIP)

Single Responsibility Principle (SRP)

Your class should do one thing. Don’t ask a class to do more than one of
these things:

	Acquire state

	Persist state

	Send messages (like Websockets, emails, events, etc.)

	Render context-specific representations of data

	etc (i.e. not a complete list)

Open-Closed Principle

Open for extension but closed to modification. When you create a class,
your users should not need to change it to add features or adapt to a
very specific case. But they should be able to extend that class.

Liskov Substitution Principle

Sounds fancy, but you already know about this: if you have an abstract
base class, your subclasses should act like that abstract class would
act (if it were not abstract). Same for a non-abstract base class and
children.

Interface Segregation Principle

It’s harder to do this in Python because Python does not have an
interface language feature. If you do define an interface via an Abstract
Base Class, do not force every implementing class to implement functionality not
relevant to them. This hardly applies to Python because a class should do only
one thing and subclasses should do that one thing in a way that is specialised.

Dependency Inversion Principle (DIP)

“High-level modules should not depend on low-level modules.
Both should depend on abstractions.”

“Abstractions should not depend on details. Details should
depend on abstractions.”

–Agile Software Development; Robert C. Martin; Prentice Hall, 2003

You don’t want your business rules and entity definitions to reference or be
dependent on implementation details, like persistence frameworks, IO mechanisms
or other low level things.

In summary:

The SOLID principles are valid, but strive for simplicity and appreciate the
costs entailed by abstractions. There is such as thing as too much abstraction.

Don’t introduce a dependency injection library in your project if you can get
away with adding and modifying entities in your view function.

Frameworks with Object Relational Mappers make it very hard to keep to this
principle because they closely couple two things: low level persistence details
and the high-level domain entities. Trying to apply DIP here can cause things to
get complicated very fast, i.e. techncial debt could spiral out of control. You
might need to live with something that is imperfect.

There are many things to consider in building class hierarchies. The
most important thing is to keep things simple. Secondly, always consider
when you use a language feature if you are doing it for the class user
or for the reader of the class code. The latter should be prioritised.

Composition and inheritance as competing design patterns is one of the
most important things you can learn about how to use classes in Python:

Brandon Rhodes’ guide to design
patterns [https://python-patterns.guide/]

Class naming

When naming a class, avoid using the word “Base” as a prefix for the
earliest ancestor. It’s better to choose a name that expresses what the
class is because that will help you concentrate on the purpose of the
class and subclasses. If you have a “Fish” hierarchy, you would not say

BaseFish
 FinFish
 ShellFish

You want the base class to be called “Fish”. This also means you won’t
need to rename your class later when you find out you want to make your
Fish class hierarchy derive from “Animal”.

Abstract classes

Use the ABC class to create an abstract class. Then use the
@abstractmethod decorator for your abstract methods. Make sure you
make properties abstract when they should be abstract. Abstract
properties are awkward in Python, but the following works.

from abc import ABC, abstractmethod

class A(ABC):
 @property
 @abstractmethod
 def a(self):
 pass

 @abstractmethod
 def b(self):
 pass

class B(A):
 a = 1

 def b(self):
 pass

Remember when creating and passing class types, Python won’t check type
identity when operating on what purports to be a specific object type.
As long as one class seems to have the same behaviour as another class,
it all works out. That’s duck typing. This lets any type of object
impersonate any other type as long as it supports the same methods and
properties that are used in the code that is handling these type
instances.

Class Initialisation

Remember when you start initialising class instance properties the
reader will ask herself which one of these stateful properties will be
modified during the lifetime of the object. You need to make this easy,
not hard.

If you assign a self.myvar, the reader cannot be certain of what
happens later with that variable. Therefore, don’t use instance
properties for constants. If you have a “base_url” that won’t change and
is not initialised from a parameter, define it at module level or class
level (a class property vs instance property). Reducing the number of
class instance variables, reduces complexity of the class.

If you have a variable at module level in all upper case, it seems like
overkill to also type hint it with Final. But using the type hint
Final when assigning class instance variables is incredibly useful.

class Fish:
 def __init__(self, base_url):
 self.base_url: Final = base_url # good to know!

We always want to assume that a class property will never change. This
might not be the case but almost always will be. There is rarely a good
case for mutable class variables. If you want a singleton class pattern,
remember this pattern already exists in Python in the form of module
level variables. Don’t implement it in a class.

If you are defining constants closely associated with a class, it is
probably still better to define them in a constants.py file.

Parameter Consolidation

Often, you start with a reasonably simple initialisation:

def __init__(self, name):
 ...

and later, it gets more complicated:

def __init__(self, name, street, postcode, town, country):
 ...

You then end up having many class instance variables that you have to manage.
This causes a reader to have to scan the code more intensively to find out which
variables get changed and when. It significantly degrades scanability of your
code. It is better to use a Parameter Consolidation variable:

class Person:
 name
 street
 postcode
 town
 country

Now we initialise the class like this:

m = SnailMail(Person(data))

Or, even better, create it with a factory function or class.

m = snail_mail_factory(person=None):
 return SnailMail(person or Person())

There should be no obscurity about how this is constructed or any danger
of the state changing after being passed to __init__(). It must be
immutable. Python dataclasses
(https://docs.python.org/3/library/dataclasses.html) are ideal for this,
or use the Pydantic package (https://pydantic-docs.helpmanual.io/).

Class Factoring

Let’s assume we need a class or classes to represent an integration with
a remote service. How many classes will we have? Let’s assume we need to
represent getting variations of a data type from the same endpoint.

What you should not do: create an abstract base class that is a service
provider or utility for subclasses.

	Remoteclient: Separate out the acquisition of state into a class that
does only that. You can have different versions that implement
caching or other pure state management functions.

	DomainManager: A class that manages the state in the sense of
implementing any business rules.

	Formatter: A class or module level function that implements
transformations on the data to make it fit specific usage scenarios.

	Factory: A class or module level function that creates appropriate
DomainManager subclass and injecting the appropriate RemoteClient

Then only the DomainManger gets subclassed for specific kinds of data.
If you need to parameterise any of these with complex set of data, use a
Parameter Consolidation class.

Again, don’t have any @staticmethods. Have only
@classmethods that access the cls variable. But most of these
can probably be module level functions which makes it easier to read the
code, since they will be pure functions and your class will be smaller.

self and cls parameter names are conventions, not keywords. Be
aware if some developer is using a different convention.

See the sample project for more information:

https://github.com/paul-wolf/python_coding/tree/main/fish

Web Frameworks

Web apps are a class of application with sterotypical problems. Many
problems with code complexity come with mixing up the web framework
objects with business logic and service code. One important sign this
happens is passing context dependent variables that represent constructs
of the web framework to subroutines. There are two kinds of context
dependent variables typical of web frameworks:

	Request and Response objects

	ORM objects if the web framework has or supports a database
abstraction framework

You want to minimise passing of these objects through the call graph of
your own code.

The principle feature of a web framework is the view function. The only
relationship you want your view function to have with other parts of
your code is data. The view function passes data to other parts of your
application and gets data back. Passing a user id (int) is better than
passing a User object. But if the called code will immediately again use
that to query the database for user information, you now have an
unnecessary call to the database. But maybe you have the data already,
so pass that (company id?), but not in the form of a context-dependent
variable that may have side effects and couples lower layers to the web
framework. There are various options here but most importantly, you want
to divest your function calls of couplings to your ORM or web framework.

If you end up passing the Request or ORM objects throughout your own
code, far downstream, it will have dire consequences for readability and
maintaining the code base.

If your view function can call the database, apply some business logic,
return results, you are good to go. Don’t try to make the view function
into an abstraction layer that hides everything else. If the
functionality is too complex and would cause flake8 to judge the
functionality of the view function to be over the accepted threshold,
maybe reduce the view function to be short, handling mostly view things
and let subroutines do the complex things. But do not then start
coupling your view with the underlying routines by passing context
dependent variables representing framework features. The benchmark is
that the subroutines should be callable by non-view code. They should be
easy to setup, easy to load in ipdb and ipython and require as few
imports as possible.

If you are tempted to implement abstractions that support the Dependency
Inversion Principle (DIP), be mindful that this can be hard to do when many web
frameworks ensure tight coupling between high-level modules (your domain
entitites and rules) and low level modules like the persistence layer. Fighting
against this to achieve a Clean Architecure can have a high cost.

Summary

Look at other people’s code a lot, open source projects and the Python
Standard Library itself.

But remember the popularity of a Python open source project is not a
guarantee of good code practices to be emulated in your own projects.
Some popular projects implement questionable design practices. Don’t be
led astray.

This article only touches the surface on all the things you need to
think about. You can never get a complete picture of good practices from
a single source. You should also not trust a single source as
authoritative. The only way to achieve some mastery over Python is
studying the advice of many people, articles, presentations, videos,
etc.

Use the associated code review checklist as a starting point. Modify it
as you research and gather experience.

Class Design Example

We take an example of an application that calls a service to get fisheries data.
The following code should run fine. It will print out common names of species.

You can find all the source code for this chapter here. [https://github.com/paul-wolf/python_coding/tree/main/fish]

from urllib.parse import urljoin

import requests

class DummyWebSocket:
 def notify(self, name):
 print(f"{self.__class__.__name__}: {name}")

mwi = DummyWebSocket()

https://fishbaseapi.readme.io/docs

class Fish:
 FIELD_NAME = "GenName"

 def __init__(self, base_url):
 self.base_url = base_url
 self.name_template = "Common name: {}"

 def _get(self, path):
 """Return response from calling fish service."""
 return requests.get(urljoin(self.base_url, path))

 def format_data(self, name_data):
 return self.name_template.format(name_data)

 def get_common_names(self):
 response = []
 for data in self._get("genera").json()["data"]:
 response.append(self.format_data(data.get(self.FIELD_NAME)))
 return response

 def get_names_and_notify(self):
 for name in self.get_common_names():
 mwi.notify(name)

if __name__ == "__main__":
 fish = Fish("https://fishbase.ropensci.org/")
 print(fish.get_names_and_notify())

It is a common way for developers to write the first version of a
class. It has various features that give it the appearance of flexibility:

	It lets the caller customise the url, allowing the called service to be changed if required

	It has separate methods for getting data vs notifying the UI or formatting that data

	The field in the returned data can be customised easily

However, there are some big drawbacks:

	To write an application, we’d spend a lot of time inside this class, firstly studying it to determine its behaviour and then re-writing to accommodate different behaviours

	It has to be modified directly rather than extended to achieve different behaviour. That’s bad (see SOLID).

	It does a lot of things: acquiring state, notifying the UI, formatting in a specific way

Any attempt to build on this class while retaining the basic structure will
result in a mess of unreadable, hard-to-manage code.

Refactored Fisheries Example

We can refactor everything to be vastly more flexible and easier to maintain and especially easier to test. Firstly, we’d create files to hold code that separates concerns:

	notifiers.py: this has code to notify

	clients.py: this has code to get state data from local or remote sources

	interfaces.py: this defines object types we need to instantiate that follow the protocol we want

	factories.py: this creates objects according to protocols we want

	formatters.py: this formats data in ways we need for different application purposes

	fish.py: this holds domain manager objects

In our application source, fisheries.py, which might be a view function, we’ll import all the tools we’ve created:

import notifiers
import clients
import factories
import formatters
import fish

Now we can start doing various application tasks. This code is the fastest changing, least essential code:

fish_genera = factories.fish_factory(fish.FishGenera, client=clients.FishClientFile())

Iterate the genera and report to the user interface via web sockets
for data in fish_genera:
 notifiers.FishUINotifier().notify(
 formatters.get_formatted_fish(data, lambda f: f"This is the genus name: {f}")
)

We do all the mixing and matching of tools here. See the example source code, which you can also run:

https://github.com/paul-wolf/python_coding/tree/main/fish

Python Code Review Checklist

General

	Code is blackened with black

	flake8 has been run with no errors

	mypy has been run with no errors

	Function complexity problems have been resolved using the default
complexity index of flake8.

	Important core code can be loaded in iPython, ipdb easily.

	There is no dead code

	Comprehensions or generator expressions are used in place of for
loops where appropriate

	Comprehensions and generator expressions produce state but they do
not have side effects within the expression.

	Use zip(), any(), all(), etc. instead of for loops where
appropriate

	Functions that take as parameters and mutate mutable variables don’t
return these variables. They return None.

	Return immutable copies of mutable types instead of mutating the
instances themselves when mutable types are passed as parameters with
the intention of returning a mutated version of that variable.

	Avoid method cascading on objects with methods that return self.

	Function and method parameters never use empty collection or sequence
instances like list [] or dict {}. Instead they must use
None to indicate missing input

	Variables in a function body are initialised with empty sequences or
collections by callables, list(), dict(), instead of [],
{}, etc.

	Always use the Final type hint for class instance parameters that
will not change.

	Context-dependent variables are not unnecessarily passed between
functions or methods

	View functions either implement the business rules the view is
repsonsible for or it passes data downstream to have this done by
services and receives non-context dependent data back.

	View functions don’t pass request to called functions

	Functions including class methods don’t have too many local
parameters or instance variables. Especially a class’ __init__()
should not have too many parameters.

	Profiling code is minimal

	Logging is the minimum required for production use

	There are no home-brewed solutions for things that already exist in
the PSL

Imports and modules

	Imports are sorted by isort or according to some standard that is
consistent within the team

	Import packages or modules to qualify the use of functions or classes
so that unqualified function calls can be assumed to be to functions
in the current module

Documentation

	Modules have docstrings

	Classes have docstrings unless their purpose is immediately obvious

	Methods and functions have docstrings

	Comments and docstrings add non-obvious and helpful information that
is not already present in the naming of functions and variables

General Complexity

	Functions as complex as they need to be but no more (as defined by
flake8’s default complexity threshold)

	Classes have only as many methods as required and have a simple
hierarchy

Context Freedom

	All important functionality can be loaded easily in ipython
without having to construct dummy requests, etc.

	All important functionality can be loaded in pdb (or a variant, ipdb,
etc.)

Types

Have immutable types, tuple, frozenset, Enum, etc. been used in place of
mutable types whenever possible?

Functions

Functions are pure wherever possible, i.e. they take input and provide a
return value with no side-effects or reliance on hidden state.

Modules

	Module level variables do not take context-dependent values like
connection clients to remote systems unless the client is used
immediately for another module level variable and not used again

Classes

	Every class has a single well-defined purpose. That is, the class
does not mix up different tasks, like remote state acquisition, web
sockets notification, data formatting, etc.

	Classes manage state and do not just represent the encapsulation of
behaviour

	All methods access either cls or self in the body. If a
method does not access cls or self, it should be a function
at module level.

	@classmethod is used in preference to @staticmethod but only
if the method body accesses cls otherwise the method should be a
module level function.

	Constants are declared at module level not in methods or class level

	Constants are always upper case

	Abstract classes are derived from abc: from abc import ABC

	Abstract methods use the @abstractmethod decorator

	Abstract class properties use both @abstractmethod and
@property decorators

	Classes do not use multiple inheritance

	Classes do not use mixins (use composition instead) except in rare
cases

	Class names do not use the word “Base” to signal they are the single
ancestor, like “BaseWhatever”

	Decorators are not used to replace classes as a design pattern

	__init__() does not define too many local variables. Use the
Parameter Consolidation pattern instead.

	A factory class or function at module level is used for complex class
construction (see Design Patterns) to achieve composition

	Classes are not dynamically created from strings except where forward
reference requires this

Design Patterns

	Do not use designs that cause a typical Python developer to have to
learn new semantics that are unexpected in Python

	Classes primarily use composition in preference to inheritance

	Beyond a very small number of simple variables, a class’ purpose is
to acquire state for another class or it uses another class to
acquire state in particular if the state is from a remote service.

	If you use the Context Parameter pattern, it is critical that the
state of the context does not change after calling its
__init__(), i.e. it should be immutable

	If a class’ purpose is to represent an external integration, you
probably want numerous classes to compose the service:
RemoteDataClient, DomainManager, ContextManager, Factory,
NotificationController, DomainResponse, DataFormatter, etc.

Index

 nav.xhtml

 Table of Contents

 		
 Python Coding Guidelines

 		
 Tools

 		
 Repls and debuggers

 		
 Code Improvement Utilities

 		
 Basic Python Code Guidelines

 		
 Post hoc Refactoring vs Upfront Design Investment

 		
 Side Effects and State Management

 		
 Dead code

 		
 Types

 		
 Modules and Packages

 		
 Functions

 		
 Default initialisations

 		
 Problems with dict.get()

 		
 Iterating

 		
 Initialisation

 		
 Comments and naming

 		
 Profiling code

 		
 Don’t reinvent

 		
 Unit tests and Linters

 		
 Context Dependent Variables

 		
 Class Design

 		
 SOLID principles

 		
 Single Responsibility Principle (SRP)

 		
 Open-Closed Principle

 		
 Liskov Substitution Principle

 		
 Interface Segregation Principle

 		
 Dependency Inversion Principle (DIP)

 		
 Class naming

 		
 Abstract classes

 		
 Class Initialisation

 		
 Parameter Consolidation

 		
 Class Factoring

 		
 Web Frameworks

 		
 Summary

 		
 Class Design Example

 		
 Refactored Fisheries Example

 		
 Python Code Review Checklist

 		
 General

 		
 Imports and modules

 		
 Documentation

 		
 General Complexity

 		
 Context Freedom

 		
 Types

 		
 Functions

 		
 Modules

 		
 Classes

 		
 Design Patterns

_static/file.png

_static/minus.png

_static/plus.png

